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To relocate two Hopf bifurcation points, simultaneously, to any desired locations in n-dimensional
nonlinear systems, a novel dynamic state-feedback control law is proposed. Analytical schemes to
determine the control gains according to the conditions for the emergence of Hopf bifurcation are
derived. To verify the effectiveness of the proposed control law, numerical examples are provided.
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1. Introduction

Bifurcation control has attracted many researchers due to its
promising potential applications in various areas: the prevention of
voltage collapse in electric power systems [1,2], the stabilization of
rotating stall and surge in axial flow compressors [3,4], the regula-
tion of human heart rhythms and neuronal activity behavior [5–7],
the elimination of seizing activities in human cerebral cortex [8],
and so on. In general, bifurcation control deals with designing a
control law that is capable of modifying the bifurcation charac-
teristics such as relocating the onset of an inherent bifurcation,
modifying the stability and amplitudes of a bifurcated solution or
branch, creating a new bifurcation at a desired parameter value,
etc. [9]. Various bifurcation control approaches have been proposed
in the literature [10–16]. Particularly, for the problem of relocat-
ing an inherent Hopf bifurcation, Wang and Abed [11] proposed a
dynamic state-feedback control law incorporating a washout filter.
Since then, the washout filter-aided dynamic feedback control has
been widely applied in controlling the Hopf bifurcation in various
bifurcating nonlinear systems [6,7,17–20]. Later, a static state feed-
back control with polynomial functions was proposed by Yu and
Chen [13]. However, these methods cannot be applied to the sys-
tems with two Hopf bifurcations, since the relocation of one Hopf
bifurcation point affects the location of the other [7,17]. Therefore,
in general, it is needed to design a control law that can relocate
both points to their individual desired positions. To the best of the
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authors’ knowledge, such Hopf bifurcation control problem has not
been investigated yet.

In this Letter, a novel dynamic state-feedback control law is
derived for controlling the Hopf bifurcations in an n-dimensional
nonlinear system. The proposed control law is able not only to
relocate two different Hopf bifurcation points to any designated
parameter values simultaneously but also to preserve all the equi-
librium points of the system. According to the conditions [21] for
the emergence of Hopf bifurcations without using eigenvalues, the
procedure for deducing the control gains is derived analytically.
The effectiveness of the proposed control law is verified through
numerical examples. Throughout the Letter, R and Rn denote the
real number set and the n-dimensional Euclidean space, respec-
tively. In presents the identity matrix of dimension n, and 0n×m

denotes the n × m null matrix.
The rest of this Letter is organized as follows. In Section 2, the

conditions for the emergence of Hopf bifurcations are reviewed.
In Section 3, a novel dynamic state-feedback control law for con-
trolling Hopf bifurcation is proposed. The procedure to deduce
the control gains is also derived in this section. In Section 4, we
provide numerical examples to verify the effectiveness of the pro-
posed bifurcation control method. Finally, conclusions are given in
Section 5.

2. Conditions for the emergence of Hopf bifurcations

Consider the following n-dimensional nonlinear system.

ẋ = f (x,μ),

f : Rn+1 → Rn, x ∈ Rn, μ ∈ R, (1)

0375-9601/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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where x is the state vector, μ is the bifurcation parameter, and the
vector field f (x,μ) is smooth in x and μ. Suppose that the sys-
tem (1) has an equilibrium point at x = xe , for some μ = μe , i.e.,
f (xe,μe) = 0. Let J (xe,μe) = ∂ f (x,μ)/∂x|x=xe ,μ=μe be the Jaco-
bian matrix evaluated at the equilibrium point. Assume that the
following two conditions are satisfied:

(i) Eigenvalue crossing condition: The Jacobian matrix J (xe,μe)

has a pair of pure imaginary eigenvalues λ(μe) = ±jω, and
the other eigenvalues have negative real parts.

(ii) Transversality condition: The eigenvalues λ(μe) cross the
imaginary axis at some nonzero speed, i.e.,

d(Re λ(μ))

dμ

∣∣∣∣
μ=μe

�= 0. (2)

Then, the system (1) undergoes a Hopf bifurcation at μ = μe . The
conditions (i) and (ii) provide the traditional criteria for detecting
the existence of Hopf bifurcations, which is stated in terms of the
properties of eigenvalues. In order to create a Hopf bifurcation at
a desired parameter value by using a control signal, one expects
to obtain analytical expressions of all the eigenvalues of the Ja-
cobian matrix of the closed-loop system as functions of control
gains. However, for a high-dimensional system, such analytical ex-
pressions are very difficult to obtain or even impossible. To avoid a
direct solving of all the eigenvalues, Liu [21] derived an equivalent
criterion for the Hopf bifurcation, which is stated in terms of the
coefficients of the characteristic polynomial instead of expressions
for the eigenvalues, as stated below.

Let the characteristic polynomial of the Jacobian matrix J (xe,

μe) be

P
(
λ;μe) = det

(
λIn − J

(
xe,μe))

= p0
(
μe)λn + p1

(
μe)λn−1 + · · · + pn

(
μe), (3)

where In is the n-dimensional identity matrix. The following ma-
trix is introduced.

Hn
(
μe) =

⎡
⎢⎢⎣

p1(μ
e) p0(μ

e) · · · 0
p3(μ

e) p2(μ
e) · · · 0

...
...

. . .
...

p2n−1(μ
e) p2n−2(μ

e) · · · pn(μ
e)

⎤
⎥⎥⎦ , (4)

where pi(μ
e) = 0 if i < 0 or i > n. Then, the conditions (i) and (ii)

are respectively equivalent to the following conditions:

(i) Eigenvalue crossing condition:

pn
(
μe) > 0,

�i
(
μe) = det

(
Hi

(
μe)) > 0, i = 1, . . . ,n − 2,

�n−1
(
μe) = det

(
Hn−1

(
μe)) = 0. (5)

(ii) Transversality condition:

d(�n−1(μ))

dμ

∣∣∣∣
μ=μe

�= 0. (6)

3. The proposed Hopf bifurcation control law

Suppose that, when μ is varied, the system (1) undergoes Hopf
bifurcations at two points (xe1,μe1) and (xe2,μe2). The objective
of Hopf bifurcation control here is to design a control law u such
that both the Hopf bifurcation points (xe1,μe1) and (xe2,μe2) are
relocated to new positions, say (x̄e1, μ̄e1) and (x̄e2, μ̄e2), respec-
tively. A general dynamic state-feedback control law can be formu-
lated as follows:

u = u(x, y),

ẏ = g(x, y), (7)

where y ∈ Rm (1 � m � n) is the state vector of the controller, and
the feedback control u(x, y) and the vector field g(x, y) are smooth
in x and y. Specifically, the following feedback control law having
a linear term and a cubic term is proposed.

ui(xi, yi) = k1i xi + k3i
(
xi − x̄e1

i

)3 − li yi,

ẏi = ui(xi, yi), (8)

where x̄e1
i (i = 1,2, . . . ,m) are the equilibrium values of xi at

the first designated Hopf bifurcation point, K1 = [k11,k12, . . . ,k1m]
and K3 = [k31,k32, . . . ,k3m] are the control gain vectors, and L =
[l1, l2, . . . , lm] is the constant parameter vector.

Without lost of generality, we can assume that m control com-
ponents ui , i = 1,2, . . . ,m, are added to the first m equations of
the system (1). Then, the closed-loop control system can be writ-
ten as follows:

ẋ = f (x,μ) + u(x, y),

ẏ = g(x, y), (9)

where u(x, y) = [u1(x1, y1), . . . , um(xm, ym),0, . . . ,0]T and g(x,
y) = [u1(x1, y1), . . . , um(xm, ym)]T . Owing to the incorporation of
the controller, the dimension of the controlled system becomes
n + m. It should be noted that, with the proposed control law
in (8), the equilibria of the controlled system (9) are the ones of
the original system (1) as well. Preserving the equilibria structure
of the original system during the control process is one of the es-
sential characteristics required in bifurcation control.

Remark 1. In some cases, the control objective can be achieved
by using only one control component ui . If more than one control
components are used, some control gains k1i or k3i can be set to
zero as long as the control input vector u(x, y) still contains both
the linear and the cubic terms.

Remark 2. It is well known that the cubic term occurring in a non-
linear system undergoing a Hopf bifurcation influences the stability
of the bifurcated solutions [10]. Therefore, if the control objective
is to relocate only one Hopf bifurcation point to a desired location,
then the control gain vector K3 can be used to control the stability
of the created bifurcation solutions (see Example 2).

Remark 3. Let zi = k1i xi + k3i(xi − x̄e1
i )3. Then, zi (as a function of

xi ) plays the role of input in the second equation of (8). In the
Laplace domain, (8) yields the following.

ui(s) = −li yi(s) + zi(s),

(s + li)yi(s) = zi(s). (10)

Then, the transfer function from the input zi to the output ui be-
comes

Gi(s) = ui(s)

zi(s)
= s

s + li
. (11)

From (11), it can be seen that, all li must be positive to guarantee
the stability of the control law in (8).

In what follows, we will show how to determine the control
gain vectors K1 and K3 such that the controlled system (9) as-
sociated with the control law (8) undergoes Hopf bifurcations at
(x̄e1, μ̄e1) and (x̄e2, μ̄e2). For the sake of convenience, we write
the closed-loop control system (9) in the following form.

Ẋ = F (X,μ), (12)
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where X = [x, y]T and F = [ f (x,μ) + u(x, y), g(x, y)]T . Letting
Jc(X,μ) = ∂ F (X,μ)/∂ X be the Jacobian matrix of the closed-loop
system (12), we can rewrite Jc as

Jc(X,μ) =
[

J (x) + A(X) B(X)

C(X) D(X)

]
, (13)

where J (x) = ∂ f (x,μ)/∂x, A(X) = ∂u(x, y)/∂x, B(X) = ∂u(x, y)/

∂ y, C(X) = ∂ g(x, y)/∂x, and D(X) = ∂ g(x, y)/∂ y. The matrices
A(X), B(X), C(X) and D(X) are given as follows.

A(X) =
[

M 0(n−m)×(n−m)

0(n−m)×(n−m) 0(n−m)×(n−m)

]
,

B(X) =
[

N
0(n−m)×m

]
,

C(X) = [ M 0m×(n−m) ] , D(X) = N, (14)

where the matrices M and N are defined as

M = diag
(
k11 + 3k31

(
x1 − x̄e1

1

)2
, . . . ,k1m + 3k3m

(
xm − x̄e1

m

)2)
,

N = diag(−l1, . . . ,−lm). (15)

3.1. K1 determines the Hopf bifurcation at (x̄e1, μ̄e1)

At μ = μ̄e1, the equilibrium point of the controlled system (12)
is X̄e1 = (x̄e1, ȳe1), where ȳe1

i = k1i x̄e1
i /li . Therefore, the matrix M

in (15) becomes M = diag(k11, . . . ,k1m). It is obvious that the Ja-
cobian matrix Jc( X̄e1, μ̄e1) does not depend on the control gain
vector K3. In other words, only the control gain vector K1 con-
tributes to the location of the Hopf bifurcation at (x̄e1, μ̄e1). The
characteristic polynomial of the Jacobian matrix Jc( X̄e1, μ̄e1) is
given by

P
(
λ; μ̄e1) = p0

(
μ̄e1)λn+m + p1

(
μ̄e1)λn+m−1 + · · ·

+ pn+m
(
μ̄e1). (16)

Then, according to the conditions for the emergence of Hopf
bifurcation (5) and (6), the control gain vector K1 is obtained by
solving the following equation.

�n+m−1
(
μ̄e1) = det

(
Hn+m−1

(
μ̄e1)) = 0, (17)

under the constraints

pn+m
(
μ̄e1) > 0,

�i
(
μ̄e1) = det

(
Hi

(
μ̄e1)) > 0, i = 1, . . . ,n + m − 2,

d(�n+m−1(μ))

dμ

∣∣∣∣
μ=μ̄e1

�= 0, (18)

where the matrices Hi(μ̄
e1) (i = 1, . . . ,n + m − 2) are defined as

in (4).

3.2. K3 determines the Hopf bifurcation at (x̄e2, μ̄e2)

After determining the control gain vector K1 = K ∗
1 , a Hopf bi-

furcation was created at the desired location (x̄e1, μ̄e1) irrespective
of the value of K3. Next, we will deduce the control gain vector
K3 such that another Hopf bifurcation occurs at (x̄e2, μ̄e2). At this
point, the equilibrium point of the controlled system (12) is given
by X̄e2 = (x̄e2, ȳe2), where ȳe2

i = [k∗
1i x̄

e2
i + k3i(x̄e2

i − x̄e1
i )3]/li . The

matrix M in (15) becomes

Fig. 1. Bifurcation diagram of the uncontrolled thermal convection loop model.

M = diag
(
k∗

11 + 3k31
(
x̄e2

1 − x̄e1
1

)2
, . . . ,k∗

1m + 3k3m
(
x̄e2

1 − x̄e1
1

)2)
.

(19)

Then, we obtain the Jacobian matrix Jc( X̄e2, μ̄e2) in the form of
(13), that is dependent only on the control gain vector K3. Finally,
the control gain vector K3 is obtained in the same way as that K1
was obtained, see (16) to (18).

4. Numerical examples

4.1. Example 1

Consider a 3-D thermal convection loop model [17] described
by

ẋ1 = −4x1 + 4x2,

ẋ2 = −x1x3 − x2,

ẋ3 = x1x2 − x3 − r (20)

where r ∈ R is the bifurcation parameter. Without control, the sys-
tem (20) undergoes Hopf bifurcations at two points (xe1

1 , xe1
2 , xe1

3 ) =
(3.87298,3.87298,−1) and (xe2

1 , xe2
2 , xe2

3 ) = (−3.87298,−3.87298,

−1) corresponding to the values of the bifurcation parameter as
re1 = re2 = 16, as shown in Fig. 1. Here, the thick solid lines rep-
resent stable equilibrium points, while the dotted line represents
unstable ones. The maxima and minima of unstable limit cycles are
indicated by dashed lines. Note that all the bifurcation diagrams in
this Letter were produced using the XPPAUT software package [22].
Assume that only the control component u1(x1, y1) is added to the
right-hand side of the first equation of (20). In vector form, the
controlled system is given by

Ẋ = F (X, r), (21)

where X = [x1, x2, x3, y1]T and

F (X, r) =
⎡
⎢⎣

−4x1 + 4x2 + u1(x1, y1)

−x1x3 − x2
x1x2 − x3 − r

u1(x1, y1)

⎤
⎥⎦

=
⎡
⎢⎣

−4x1 + 4x2 + k11x1 + k31(x1 − x̄e1
1 )3 − l1 y1

−x1x3 − x2
x1x2 − x3 − r

k11x1 + k31(x1 − x̄e1
1 )3 − l1 y1

⎤
⎥⎦ . (22)

Here, we set l1 = 0.5. The control objective is to advance the upper
Hopf bifurcation point toward to r̄e1 = 10, and move the lower
Hopf bifurcation point to r̄e2 = 20.
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(a) Determination of control gain k11

At r̄e1 = 10, the upper equilibrium point of the controlled sys-
tem (21) is X̄e1 = (x̄e1

1 , x̄e1
2 , x̄e1

3 , ȳe1
1 ) = (3,3,−1,2k11). Therefore,

we have

J
(
x̄e1) =

[−4 4 0
1 −1 −3
3 3 −1

]
, A

(
X̄e1) =

[k11 0 0
0 0 0
0 0 0

]
,

B
(

X̄e1) =
[−0.5

0
0

]
, C

(
X̄e1) = [ k11 0 0 ] ,

D
(

X̄e1) = [−0.5]. (23)

Using (13), the Jacobian matrix of (21) at r̄e1 = 10 is obtained as
follows.

Jc
(

X̄e1, r̄e1) =
⎡
⎢⎣

−4 + k11 4 0 −0.5
1 −1 −3 0
3 3 −1 0

k11 0 0 −0.5

⎤
⎥⎦ . (24)

Then, the characteristic polynomial of Jc( X̄e1, r̄e1) is given by

P
(
λ; r̄e1) = p0

(
r̄e1)λ4 + p1

(
r̄e1)λ3 + p2

(
r̄e1)λ2

+ p3
(
r̄e1)λ + p4

(
r̄e1), (25)

where p0(r̄e1) = 1, p1(r̄e1) = 6.5 − k11, p2(r̄e1) = 17 − 2k11,
p3(r̄e1) = 79 − 10k11, p4(r̄e1) = 36. Subject to the conditions in
(17) and (18), we obtain the value of k11 as k11 = k∗

11 = 0.82303.

(b) Determination of control gain k31

At r̄e2 = 20, the lower equilibrium point of the controlled sys-
tem (21) becomes X̄e2 = (x̄e2

1 , x̄e2
2 , x̄e2

3 , ȳe2
1 ) = (−4.35890,−4.35890,

−1,1.64606 + 797.01870k31). Then, the following are obtained.

J
(
x̄e2) =

[ −4 4 0
1 −1 4.35890

−4.35890 −4.35890 −1

]
,

A
(

X̄e2) =
[0.82303 + 162.46018k31 0 0

0 0 0
0 0 0

]
,

B
(

X̄e2) =
[−0.5

0
0

]
,

C
(

X̄e2) = [ 0.82303 + 162.46018k31 0 0 ] ,

D
(

X̄e2) = [−0.5]. (26)

Using (13), we obtain the Jacobian matrix of (21) at r̄e2 = 20 as
follows.

Jc
(

X̄e2, r̄e2)

=
⎡
⎣−3.17697 + 162.46018k31 4 0 −0.5

1 −1 4.35890 0
−4.35890 −4.35890 −1 0

0.82303 + 162.46018k31 0 0 −0.5

⎤
⎦.

(27)

The characteristic polynomial of Jc( X̄e2, r̄e2) is then given by

P
(
λ; r̄e2) = p0

(
r̄e2)λ4 + p1

(
r̄e2)λ3 + p2

(
r̄e2)λ2

+ p3
(
r̄e2)λ + p4

(
r̄e2), (28)

where p0(r̄e2) = 1, p1(r̄e2) = 5.67697 − 162.46020k31, p2(r̄e2) =
25.35393 − 324.92036k31, p3(r̄e2) = 147.53935 − 3249.20360k31,

Fig. 2. Bifurcation diagram of the controlled thermal convection loop model with
k11 = 0.82303 and k31 = −0.00794.

and p4(r̄e2) = 76. By solving (17) and (18) with respect to k31, we
obtain k31 = k∗

31 = −0.00794.
The bifurcation diagram of the controlled system is shown

in Fig. 2. As expected, the upper and the lower Hopf bifurca-
tion points have been successfully relocated to new positions at
r̄e1 = 10 and r̄e2 = 20, respectively.

4.2. Example 2

We have shown in Example 1 that the proposed control law in
(8) is capable of relocating two Hopf bifurcation points in a non-
linear system to any designated locations. Here, we will show that
when the control objective is to relocate only one Hopf bifurca-
tion point, the stability of the created bifurcation solution can be
controlled as well by using the proposed control law in (8). Let us
consider a 4-D Hodgkin–Huxley neuron model [23] described by

ẋ1 = I − 36x4
2(x1 + 12) − 120x3

3x4(x1 − 120) − 0.3(x1 − 10.6),

ẋ2 = α2(x1)(1 − x2) − β2(x1)x2,

ẋ3 = α3(x1)(1 − x3) − β3(x1)x3,

ẋ4 = α4(x1)(1 − x4) − β4(x1)x4, (29)

where I represents the external applied current, which is consid-
ered as a bifurcation parameter. The parameters α2, β2, α3, β3, α4
and β4 are functions of x1 as follows [23]:

α2(x1) = 0.01(10 − x1)/
{

exp
[
(10 − x1)/10

] − 1
}
,

β2(x1) = 0.125 exp(−x1/80),

α3(x1) = 0.1(25 − x1)/
{

exp
[
(25 − x1)/10

] − 1
}
,

β3(x1) = 4.0 exp(−x1/18),

α4(x1) = 0.07 exp(−x1/20),

β4(x1) = 1/
{

exp
[
(30 − x1)/10

] + 1
}
. (30)

Without control, the bifurcation diagram of x1 as a function of I is
shown in Fig. 3. Here, the thick solid lines represent stable equi-
librium points, while the dotted line represents unstable ones. The
maxima and minima of stable and unstable limit cycles are indi-
cated by thin and dashed lines, respectively. From Fig. 3, it can be
seen that the Hodgkin–Huxley model undergoes Hopf bifurcations
at two critical values in the external applied current I . The left
Hopf bifurcation point occurs at Ie1 = 8.4103 and the right Hopf
bifurcation point occurs at Ie2 = 163.3474. It can also be seen that
the left Hopf bifurcation is subcritical (i.e., the bifurcated limit cy-
cle is unstable).
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Fig. 3. Bifurcation diagram of the uncontrolled Hodgkin–Huxley neuron model.

Fig. 4. Bifurcation diagram of the controlled Hodgkin–Huxley neuron model with
k11 = −0.68870 and k31 = 0.

The goals of control here are (i) to move the left Hopf bi-
furcation point to Ī e1 = 20 and (ii) to stabilize the created Hopf
bifurcation solution. We select only the state variable x1 to be con-
trolled. Therefore, the control law can be described as follows.

u1(x1, y1) = k11x1 + k31
(
x1 − x̄e1

1

)3 − l1 y1,

ẏ1 = k11x1 + k31
(
x1 − x̄e1

1

)3 − l1 y1, (31)

where x̄e1
1 = 8.51830 is the equilibrium value of x1 at Ī e1 = 20.

As explained in Section 3.1 (also in Example 1), the conditions
for the occurrence of a Hopf bifurcation at Ī e1 = 20 can be sat-
isfied through control gain k11. The equilibrium point of the con-
trolled Hodgkin–Huxley neuron model at Ī e1 = 20 is obtained as
X̄e1 = (x̄e1

1 , x̄e1
2 , x̄e1

3 , x̄e1
4 , ȳe1

1 ) = (8.51830,0.45223,0.13612,0.30436,

17.0366k11). Here, we set l1 = 0.1. Then, following the procedure
in Section 3.1, we obtain the value of k11 as k11 = k∗

11 = −0.68870.
Since k31 has no effect on the location of the created Hopf bifurca-
tion point, we temporarily set k31 = 0, and calculate the bifurcation
diagram of the controlled system, as shown in Fig. 4. As expected,
the left Hopf bifurcation point has been successfully shifted to
Ī e1 = 20, and it is still subcritical.

Next, we will show that by choosing a proper value of con-
trol gain k31, the stability of the created bifurcation solution can
be achieved. Fig. 5 shows the bifurcation diagram of the controlled
Hodgkin–Huxley with k11 = −0.68870 and k31 = −0.0075. Obvi-
ously, the bifurcated limit cycle is stable or the created Hopf bifur-
cation is supercritical. Note that in order to derive the analytical

Fig. 5. Bifurcation diagram of the controlled Hodgkin–Huxley neuron model with
k11 = −0.68870 and k31 = −0.0075.

expression of the stability condition for the created bifurcation so-
lution with respect to k31, one may employ the center manifold
theory and normal form reduction as presented in [18].

5. Conclusions

In this Letter, we addressed the problem of controlling Hopf
bifurcations in nonlinear systems. We proposed a novel dynamic
state-feedback control law capable of relocating two Hopf bifur-
cation points to any desired locations simultaneously. We also de-
rived analytically the procedure to determine the control gains. The
effectiveness of the proposed control method was verified through
numerical examples.
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